

OPTIMISATION OF STRATEGIC NETWORKS

Planning for resilience, business risk, cost and network performance | Twenty65 – 26th March 2019

Christina Chiu and Dr Bojana Jankovic-Nisic

INNOVATING PLANNING FOR EFFICIENCY GAINS

- Planning and investment processes of water supply networks are generally manual and iterative exercises.
- Successful pilot new optimisation methodology for strategic planning
- Addresses the challenges set by Ofwat.

INNOVATING PLANNING FOR EFFICIENCY GAINS

- The planning process traditional vs optimised planning
- The pilot project the supply zone
- The challenge is complex our objectives
- Setting up the hydraulic and optimisation model
- The results our findings
- Other applications

TRADITIONAL VS OPTIMISED PLANNING

CAPITAL AND OPERATIONAL ASSET SELECTION PROCESS

- Provide insight into the transparent and robust investment decision making,
- Demonstrate that exhaustive options have been considered with understanding the cost and customer benefit of each, and
- Create efficiencies to the strategic planning process.

WHAT IS THE OPTIMAL LEVEL OF INVESTMENT?

HOW DID WE FIND THE OPTIMAL LEVEL OF INVESTMENT?

The Challenge is Complex – MULTIPLE OBJECTIVES

Network performance and address groundwater nitrate concentration risks

Improve system redundancy as a component of resilience

Address rising costs of capital assets

THE WATER SUPPLY NETWORK

Key Facts:

- Strategic network length: 118km
- Diameters range: 150-700mm
- Number of Reservoirs:13
- Number of groundwater sources:11
- 1 major import from neighbouring water company
- Properties: 96,000
- Average Day Demand: 480l/s (41.5Mld)

Baseline Epanet Model

The Challenge the Complex – The OPTIONS

The Challenge is Complex – RESILIENCE

SETTING UP THE HYDRAULIC MODEL

SETTING UP HYDRAULIC MODEL - CONTROLS

EPANET Water transfer and nitrate facility controls

(new)

IF VALVE New_ValveWingham_Dumping SETTING < 0.01 AND VALVE New_ValveWingham_NF SETTING < 0.01 AND VALVE NEW_ValveFlemmings_NF SETTING > 0.01 AND VALVE New_ValveFlemming_Dumping SETTING > 0.01 AND VALVE New_ValveRW_FoW SETTING > 0.01 THEN PUMP NEW_RW_WF STATUS IS CLOSED AND PIPE New_11.New_12 STATUS IS CLOSED AND PIPE New_11.New_19 STATUS IS OPEN AND VALVE New_ValveRW_FtoW STATUS IS OPEN AND PUMP NEW_RW_FW STATUS IS OPEN AND PUMP NEW_RW_FW STATUS IS OPEN AND PIPE New_15.New_16 STATUS IS OPEN AND PIPE NEW_RW2.New_15 STATUS IS CLOSED AND VALVE New_ValveRWFC2 STATUS IS CLOSED

RULE RW-Flemings-Export-isZero IF VALVE New_ValveRW_FtoW SETTING < 0.1 THEN PIPE New_11.New_19 STATUS IS CLOSED AND VALVE New_ValveRW_FtoW STATUS IS CLOSED AND PUMP NEW_RW_FW STATUS IS CLOSED AND PIPE New_15.New_16 STATUS IS CLOSED EPANET Water transfers controls (transferred from original site controls)

Optimatics

Wingham pumps to the north LINK WINGHAM-WBS-N1 OPEN IF NODE WINGHAM_WBS_N8 BELOW 43 LINK WINGHAM-WBS-N1 CLOSED IF NODE WINGHAM_WBS_N8 ABOVE 45

; Controls for when there are both Flemings and Wigham have (no) nitrate ; ; located under "Wingham" control

;Wingham

; Wingham no Nitrate Facility on (off) ; when there is (no) flow from Wingham source ; and/or (no) flow from Flemings raw water ; and not connected into the network

RULE Wingham-NitrateOn IF PIPE New_20.WINGHAM_WFM_KA0115_A FLOW > 0.01 THEN VALVE new_81.New_25 STATUS IS OPEN © Arc;AND VALVE New_1.New_nitrateWingham STATUS IS OPEN ;AND PIPE WIN_WFM_KA0115_B.WIN_WSW_N36.1 STATUS IS OPEN Outage 16 - Wingham WSW

LINK WING_WSW_N50.WING_WSW_N48.1 OPEN AT TIME 3360

EPANET Outage

controls (new)

Water Marcadis

;Outage 5 - Matin Mill WSR

;LINK MARTMILL_WSR_N10.MARTMILL.2 OPEN AT TIME 3528 ;LINK MART_WSR_N16.MART_WSR_N15.1 OPEN AT TIME 3528 ;LINK MART_WSR_N21.MART_WSR_N22.1 CLOSED AT TIME 3528

SETTING UP THE OPTIMIZER MODEL

SETTING UP THE OPTIMIZER MODEL – BESPOKE SCRIPTS

© Arcadis 2018

16

OPTIMIZER OUTPUT – 2 OBJECTIVES

© Arcadis 2018

PLAN COMPARISON

St Margarets

В

Lower Resilience Score

Moderate Resilience Score

SHigher Resilience Score

18

COST OF RESILIENCE

© Arcadis 2018

COST OF RESILIENCE

WHAT IS THE OPTIMAL LEVEL OF INVESTMENT?

WHAT DOES A BALANCED PLAN LOOKS LIKE?

- Set of plans to be analysed further in detail and understood in the context of the business appetite for risk
- Starting point for further engineering and optioneering

WHAT IS THE SENSITIVITY OF THE PLAN TO CHANGING PARAMETERS?

- Further refinement can be achieved
- The optimal solution may be sensitive to seasonal variations in demand.

WHAT IS THE BUSINESS RISK EXPOSURE FOR A GIVEN PLAN?

WHAT IS THE COST OF IMPROVING RESILIENCE?

OTHER APPLICATIONS AND SUCCESSES

- Smart Asset Planning influenced by risks related to pipe mortality, hydraulic performance and cost simultaneously
- Up to 30% cost reduction could be achieved for the same risk reduction in Totex

- Optimizer selected PRVs that could be abandoned while maintaining levels of service (3 out of 9)
- Minimised maintenance costs
- No new tanks or pipelines required

INTERRUPTIONS TO SUPPLY

- Identifying locations of cross connections to improve redundancy during mains rehabilitation work
- Via system-wide pipe criticality analysis of the water distribution system.

BOJANA JANKOVIC-NISIC

Associate Technical Director

dd +44 (0) 7793369480

e bojana.jankovic-nisic@arcadis.com

Arcadis

Bernard Weatherill House 8 Mint Walk Croydon CR0 1EA United Kingdom

CHRISTINA CHIU Senior Engineer

Arcadis

dd +44 (0) 7342080091

e christina.chiu@arcadis.com

Bernard Weatherill House 8 Mint Walk Croydon CR0 1EA United Kingdom